
Using Apple Vision Pro to Train and Control Robots

Younghyo Park and Pulkit Agrawal

1 Introduction

Apple Vision Pro (AVP), a virtual/augmented reality (VR/AR) device recently released by

Apple, tracks various movements of the user wearing the device. Wrist and finger movements,

for instance, are constantly tracked and used as its primary interface for user interaction;

sensors included in the device are optimized to provide an accurate tracking of human move-

ments. Such tracking capability makes the device particularly appealing for many robotic

applications: AVP can be used to (1) record the navigation and manipulation behaviors of

humans in real-world environment, and can also be used to (2) teleoperate a robot with intu-

itive human motions. The device’s virtual and augmented reality capabilities also opens up

new avenues for immersive experiences during robotic teleoperation.

This repository thus aims to provide diverse array of tools for using AVP in robotics

applications, starting with an easy-to-use library with minimal dependencies that can stream

the tracking data from the Vision Pro to any client device connected to the same network.

2 Tracking Streamer: VisionOS App

Tracking Streamer is an VisionOS app that you can install from the App Store. The code is

also open-sourced in the repository. The app serves two primary purposes: (a) tracking the

human movements, and (b) streaming the tracking data over network.

Retrieving Tracking Data The app uses Apple’s ARKit as its core library to track every

movements of the user wearing AVP. There are three main movements that are being tracked

by the ARKit: (a) head, (b) wrist, and (c) fingers. Note that AVP also tracks user’s eye

Figure 1: The app streams human movements to robots connected to the same network.

1

https://github.com/Improbable-AI/VisionProTeleop
https://apps.apple.com/us/app/tracking-streamer/id6478969032
https://github.com/Improbable-AI/VisionProTeleop
https://developer.apple.com/documentation/arkit/


movements, but Apple restricts developer’s direct access to the tracking data due to privacy

concerns.

To get the device’s location (head frame), the app constantly calls queryDeviceAnchor

which returns the SE(3) location of the device with respect to a fixed global frame Tg. Global

frame is initialized when the app is first launched, and is attached to a ground where you’re

in. You can also reset the global frame to current position by long-pressing the digital crown.

The head frame (device location) is then tracked using Apple’s own localization algorithm,

which can accurately locate the user even in large scale environments (Video). The app also

uses HandTrackingProvider to track the user’s wrist and fingers during the session. It tracks

the position and orientation of user’s two wrists (left and right) with respect to the ground

frame, i.e., TgwL
,TgwR

, and tracks the pose of 25 finger joints in each hand with respect to

its wrist frame, i.e., Ti
wf.

Communication with gRPC The app then uses gRPC as its network communication

protocol to stream the data to any clients existing in the same network. Use of gRPC instead of

other robotics-oriented communication protocol (e.g. ROS2) allows the data to be subscribed

from wider range of devices including Linux, Mac, Windows machines.

3 Python API

Subscribing to the data is easy: users can simply install the Python package:

1 pip install avp_stream

Below code snippet demonstrates how developers can access the data it’s being streamed.

1 from avp_stream import VisionProStreamer

2 avp_ip = "10.31.181.201" # example IP

3 s = VisionProStreamer(ip = avp_ip , record = True)

4

5 while True:

6 r = s.latest # gets the latest tracking data

7 print(r)

3.1 Available Data

The tracking data is represented as a dictionary containing the following key/values. Most

of them are raw data streamed from the device, but some are post-processed by the Python

library.

• right/left wrist: SE(3) pose of right/left wrist, measured from ground frame. np.array

with shape (1,4,4)

• right/left fingers: SE(3) pose of 25 finger joints in right/left hand, measured from the

wrist frame. np.array with shape (25,4,4).

• head: SE(3) pose of the head, measured from the ground frame. np.array with shape

(1,4,4).

• right/left pinch distance: distance between thumb and index finger. float.

2

https://developer.apple.com/documentation/arkit/worldtrackingprovider/4293525-querydeviceanchor
https://youtube.com/shorts/3r5nEQrC_3c?si=Nrp1VwHZJ_Duf-sw
https://developer.apple.com/documentation/arkit/handtrackingprovider
https://grpc.io/


Figure 2: How the axes are defined for head, wrist, and fingers.

• right/left wrist roll: roll rotation of your wrist. Measures how you rotate your wrist

around your arm axis. float.

3.2 Axes Conventions

Figure 2 shows how the axes are defined for each components. Note that Apple originally

uses Y AXIS UP convention for their tracking. Considering that most robotics applications use

Z AXIS UP instead, our python library automatically converts Apple’s representation following

Z AXIS UP convention.

3.3 Recording Data

If you pass in record = True when initializing the VisionProStreamer class, it will simply

store every streamed data into a list. To access and save the recorded data, simply call:

1 # save the recording when the app finishes

2 torch.save(s.recording , file_path)

4 Things to be careful about

During our experiments, we realized couple of scenarios where the app didn’t behave as we

expected. Most of these failure cases actually stemmed from our misunderstanding of how

Apple’s ARKit is designed to work.

• Don’t use it inside an elevator (or any moving vehicles!) — Apple’s ARKit will

fail to localize the device while you’re in a contained, but moving, environment. That

includes airplanes, cars, and even elevators! That’s why AVP has a separate ”airplane”

mode which you can turn it on from control center (perhaps a mode that exclusively uses

visual information for localization). Whenever you’re in those environments without the

mode being turned on, you’ll see this error message (Figure 3) and every tracking will

stop.

• If you’re moving downhill, your z will also be decreasing. — Once you opened

the app, the ground will not move. It’ll stay there unless you actively reintialize your

ground frame by long-pressing the digital crown. If you’re moving slightly downhill (or

3



Figure 3: AVP fails to track its device location whenever it’s in a moving vehicle (e.g. elevators,

airplanes, cars, trains).

uphill), for instance, your z will actually decrease (and increase) without you noticing.

This might actually affect the robot’s behavior, depending on how you designed to use

the tracking.

• If you put your hands completely down, AVP cannot see your hands. —

When you’re walking normally with your hands around your waist/hip, AVP struggles

to detect your hands. In those scenarios, the hand tracking stream might be a bit

noisy. The library doesn’t do any smoothing or filtering on the streamed data: so you

might have to implement your own post-processing function to filter out those noisy

estimations.

5 Conclusion

In the near future, people might be wearing devices like AVP all the time, like how we wear

glasses. Imagine how much data we can collect from those! It’s truly a promising source of

data which robots can learn how humans interact in the real world. I hope this repository is

helpful for anyone trying to use AVP for any robotics applications.

Future Plans This repository will be updated frequently, adding more features for robotics

applications using Apple’s ARKit and RealityKit. Investigating the possibility of establishing

a bilateral connection between simulation/real-world and AVP is our immediate next step.

Acknowledgement Thanks to Gabe Margolis who gave me awesome feature requests that

significantly enhanced the usability of the app/library. We acknowledge support from Hyundai

Motor Company and ARO MURI grant number W911NF-23-1-0277.

4


	Introduction
	Tracking Streamer: VisionOS App
	Python API
	Available Data
	Axes Conventions
	Recording Data

	Things to be careful about
	Conclusion

